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Abstract. Limit and shakedown analysis are effective methods for assessing the load carrying ca-
pacity of a given structure. The elasto–plastic behavior of the structure subjected to loads varying
in a given load domain is characterized by the shakedown load factor, defined as the maximum
factor which satisfies the sufficient conditions stated in the corresponding static shakedown theorem.
The finite element dicretization of the problem may lead to very large convex optimization. For the
effective solution a basis reduction method has been developed that makes use of the special problem
structure for perfectly plastic material. The paper proposes a modified basis reduction method for
direct application to the two-surface plasticity model of bounded kinematic hardening material. The
considered numerical examples show an enlargement of the load carrying capacity due to bounded
hardening.
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1. Introduction

The load carrying capacity is a central question in the design and the analysis of
engineering structures made of ductile material. As the elastic structural response
gives only a fictitious safety margin and a fictitious reliability estimate, it is neither
practical nor economic to estimate the load carrying capacity by considering only
those loadings with a purely elastic structural response. On the other hand, even if
it is possible to compute the inelastic structural response for a given load history in
a time stepping incremental analysis, the past loading may not have been recorded
and the future loading cannot be foreseen. Additionally, the structural reliability
must be measured against all possible loadings, which are not a finite number and
the different parameters of the constitutive equations cannot be precisely measured.
All these arguments recommend the direct methods of plasticity, i.e. limit and
shakedown analysis, methods which are effective from the numerical point of view
and useful in the study of complex structures.

The static approach to limit and shakedown analysis poses a convex optim-
ization problem with an infinite number of constraints. This approach is based
on a mathematical formulation of the conditions which the structure must satisfy
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such that critical states corresponding to plastic collapse, incremental collapse
(ratchetting) or alternating plasticity (Low Cycle Fatigue, LCF) are not attained.
In fact, these conditions assure the boundedness for all possible loading histor-
ies of the total plastically dissipated plastic energy of the structure. The struc-
ture must be in equilibrium and the constitutive equations must be satisfied in
any material point. The static limit and shakedown theorem has been formulated
by Melan for perfectly plastic and for unbounded kinematic hardening material
(Melan, 1938). Using a two–surface plasticity model, a generalization to bounded
kinematic hardening has been proposed in (Weichert and Gross-Weege, 1988). It
turns out that only few information are relevant, e.g. for monotone loading limit
analysis shows that no elastic data enters the problem. Similarly, for certain cyclic
or general time invariant load histories shakedown analysis needs few characteristic
data of the hardening behavior (Zhang, 1991), (Stein et al., 1993).

For a Finite Element (FE) discretisation a finite but generally large number of
constraints is achieved. The basis reduction method keeps only a small number of
unknowns. It was developed for linear optimization in (Shen, 1986) making use of
the special structure of the shakedown problem for perfectly plastic material. In the
same constitutive setting the method has been extended to nonlinear optimization
in (Gross-Weege, 1996), (Heitzer, 1999), (Staat and Heitzer, 1997), (Zhang, 1991).
The extension to the more realistic bounded kinematic hardening material has been
achieved in (Zhang, 1991), (Stein et al., 1993) by use of the overlay model (also
called fraction or multiple subvolume model) which preserves the characteristic
structure of the perfectly plastic formulation. However, before this approach can be
used with a commercial FE code it would be necessary to implement the overlay
model for different types of finite elements.

It is the purpose of this contribution to propose a modified basis reduction
method for the structure of a two-surface plasticity formulation of bounded kin-
ematic hardening. It can be used for any type of finite elements with no need to
make any changes in the plasticity section of the FE code. The new method is
implemented in the general FE–code PERMAS (PERMAS, 1988). An increase of
the load carrying capacity due to hardening is shown in some numerical examples.

2. Bounded kinematic hardening

For describing the theoretical frame we will use the Generalized Standard Material
Model (Halphen and Nguyen, 1975).

An elastic–plastic body of finite volumeV with a sufficiently smooth surface
∂V , subjected to the quasi–statical thermo–mechanical loadsP(t) varying in the
load domainL is considered. The hypothesis of small displacements and small
strains is made and the strains are decomposed in:

ε = εE + εp + εth with εth = αt θ I .
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Hereαt is the coefficient of isotropic temperature expansion andθ = T − T0,
whereT0 is a reference temperature.

At each timet the load consists of body forces, surface tractions (acting on
∂Vp), given displacements (on∂Vu, where∂Vp + ∂Vu = ∂V ) or prescribed tem-
peratures (inV ).

The observable variables are the total strainε and the temperatureT . The
internal variablesεp and κ will describe the influence of the past history. The
thermodynamic potentialψ has the form

ψ = ψ(εE, κ , T ) = ψe(εE, T )+ ψp(κ).
It is assumed thatρψp is a quadratic form in the variableκ and

ρψe = 1

2
(εE − αtθ I) : E : (εE − αtθ I)+ Cεθ2,

whereρ is the mass density,E is the elasticity tensor,Cε is the specific heat at
constant strain.

The associated variables, i.e. the observable stressesσ and the internal back–
stressesπ , are derived from the potentialψ as follows:

σ = ρ ∂ψ
∂εE
;π = ρ ∂ψ

∂κ
.

The internal variableκ is a kinematic hardening variable and its associated vari-
ableπ is associated with the center of the elastic domain.

Assuming the decoupling between intrinsic (mechanical) dissipation and thermal
dissipation, the Clausius–Duhem inequality gives:

σ : ε̇p − π : κ̇ > 0.

The linear kinematic hardening corresponds to the translation of the loading
surface:

F [σ − π] = σ 2
y .

The interior of the loading surface{σ | F [σ−π ] < σ 2
y } is the elastic domain which

is described by the functionF and the yield stressσy. The homogeneous von Mises
functionF [σ ] = 3σD : σD of degree 2 with the deviatoric stressσD=σ−1

3(tr σ )I
is the simplest smooth function which can be considered for isotropic, plastically
incompressible materials.

The stressσ is bounded by the ultimate stressσu and the limit surface is de-
scribed with the same von Mises function:

F [σ ] 6 σ 2
u .

The elastic domain remains always in the limit surface and any stress point in it
may be reached if and only if

F [π ] 6 (σu − σy)2 .
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The associated normality hypothesis is made for the plastic flow:

κ̇ =ε̇p = λ̇ ∂F
∂σ
[σ − π], with


λ̇ = 0, if F [σ − π] < σ 2

y

λ̇ = 0, if F [σ − π] = σ 2
y and

(σ̇ − π̇) : ∂F
∂σ
[σ − π] < 0

λ̇ > 0, else.

The stressesσ are decomposed into fictitious elastic stressesσE and residual stresses
ρ by

σ = σE + ρ. (1)

σE = E : ε are stresses which would appear in an infinitely elastic material. The
residual stresses (eigenstresses)ρ result from plastic deformations and satisfy the
homogeneous static equilibrium and boundary conditions

div ρ = 0 in V (2)

ρ n = 0 on∂Vp. (3)

3. Lower bound approach of shakedown

A body shakes down elasticallyfor the given history of loadingP(t) varying inL
if the plastic strainsεp(t) become stationary, i.e.

lim
t→∞ ε̇

p(x, t) = 0, ∀ x ∈ V. (4)

and the total plastic energy dissipation in the structure for the whole load history is
bounded, i.e.Wp =

∫∞
0

∫
V
σ (x, t) : ε̇p(x, t)dxdt < ∞. Therefore, a body shakes

down if independent of the loading history the body approaches asymptotically an
elastic limit state.

The extended static theorem of shakedown for a bounded kinematic hardening
material can be formulated as follows (Stein et al., 1993):

If there exist a time–independent back–stresses fieldπ(x) satisfying

F [π(x)] 6 (σu(x)− σy(x))2 ,
a factorα > 1 and a time–independent residual stress fieldρ(x) such that

F [ασE(x, t) + ρ(x)− π(x)] 6 σ 2
y (x) (5)

holds for all possible loadsP(t) ∈ L and for all material pointsx, then the
structure will shake down elastically under the given load domainL.
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The greatest valueαsd for which the theorem holds is calledshakedown-factor.
This lower bound approach leads to the convex optimization problem

max α (6)

s.t. F [ασE(x, t)+ ρ(x)− π(x)] 6 σ 2
y (x) ∀x ∈ V

F [π(x)] 6 (σu(x)− σy(x))2 ∀x ∈ V
div ρ(x) = 0 ∀x ∈ V
ρ(x) n = 0 ∀x ∈ ∂Vp

with infinitely many constraints, which can be reduced to a finite problem by FEM
discretization (see the following sections). Shakedown analysis gives the largest
range in which the loads may safely vary with arbitrary load history. If the load
domainL shrinks to a single load point, limit analysis is obtained as a special case.
For the perfectly plastic behavior (σu = σy), the back–stressesπ are identical zero
due to the second inequality. Melan’s original theorem for unbounded kinematic
hardening can be also deduced from the previous formulation ifσu → ∞. Then
the second inequality is not relevant anymore and the back–stressesπ are free
variables.

The 3–dimensional overlay (microelement) model, known also as Besseling’s
fraction model (Besseling, 1985), was used in (Stein et al., 1993) for solving nu-
merically the problem (6). In the overlay model an infinite number of microele-
ments denoted by the scalarξ ∈ [0,1] are associated with each material point of
the given structurex ∈ V . In a simple model each layer (characterized by a constant
ξ ) behaves elastic, perfectly plastic. All layers have the same elasticity tensor, but
they have different yield stresses denoted byk(ξ). It is assumed that the internal
strengthk(ξ) is a monotonously increasing function ofξ . Additionally, for eachx,

k(x,0) = σy(x),
1∫

0

k(x, ξ )dξ = σu(x).

It was proved that the shakedown load factor, i.e. the solution of the problem (6)
depends only on the valuesσu(x) andσy(x), i.e. it does not depend on the function
k(ξ).

4. Discretization of the problem

For the FEM the structureV is decomposed inNE finite elements with the
Gaussian pointsxi , i = 1, . . . , NG. The constraints of the optimization
problem (6) are checked only in the Gaussian points.
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The following abbreviations? are used in this paper:

NE number of elements of the structure

NF number of degrees of freedom of the structure

NG number of Gaussian points of the structure

NS number of stress components in each Gaussian points

NV number of load vertices

Using the displacement approach as in all commercial FEM codes (Argyris and
Mlejnik, 1987), (PERMAS, 1988) the following discretized equilibrium equations
for the residual stresses can be derived:

NG∑
i=1

Ciρi = 0. (7)

The element matricesCi are calculated by the nodal point displacements and the
boundary conditions of the structure such thatCi ∈ RNF×NS andρi ∈ RNS holds.
With the abbreviationsC = (C1, . . . ,CNG) andρT = (

ρT1 , . . . , ρ
T
NG

)
, equation

(7) yields

Cρ = 0. (8)

With the fictitious elastic stressesσEi (t) = σE(xi , t), the residual stressesρi =
ρ(xi), the back–stressesπ i = π(xi ), the yield stressesσy,i = σy(xi) and the
ultimate stressesσu,i = σu(xi ), the constraints in the extended static shakedown
theorem become:

F [ασEi (t)+ ρi − π i] 6 σ 2
y,i ,

F [π i] 6
(
σu,i − σy,i

)2
, ∀i = 1, . . . , NG.

Cρ = 0.

All vectorsρ which fulfill equation (8) are in the kernelB (residual stress space)
of the linear mapping defined by the matrixC. In our caseC ∈ RNF×(NS·NG)
andρ ∈ RNS·NG. If rigid body movements are excluded, the matrixC has the
maximum rank and its rank is given by the degrees of freedomNF of structureV .
Consequently, dimB = NG ·NS −NF .

The discretized shakedown problem of the lower bound approach is:

max α (9)

s.t. F [ασEi (t)+ ρi − π i] 6 σ 2
y,i

F [π i] 6
(
σu,i − σy,i

)2
for i = 1, . . . , NG, P (t) ∈ L, ρ ∈ B andπ ∈ RNS·NG.

? It is assumed for simplicity that all elements have the same number of Gaussian points.
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This problem has 2·NS·NG+1 unknowns:ρi ,π i and the load factorα. Because of
the time dependence of the fictitious elastic stressesσEi the number of constraints
is still infinite.

We proceed now with the discretization of the load domain assuming that the
load boundary∂Vp remains constant. For problems with variable load boundary
see e.g. (König, 1987), (Shen, 1986) for moving loads on plates or (Kapoor and
Johnson, 1994) for structures with contact. Additionally, we suppose that the load
domainL is a convex polyhedron with the verticesP(k), k = 1, . . . , NV (load
vertices). Consequently, any loadP(t) ∈ L is given by a convex combination of
theP(j), j = 1, . . . , NV .

Let σEi (j) be the fictitious elastic stress in the Gaussian pointxi corresponding
to thej -th load vertex. Due to the convexity ofF the constraints of (9) must be
verified only in the load vertices, therefore the mathematical optimization problem
(9) is reduced to the following one:

max α (10)

s.t. F [ασEi (j)+ ρi − π i] 6 σ 2
y,i

F [π i] 6
(
σu,i − σy,i

)2
for i = 1, . . . , NG, j = 1, . . . , NV, ρ ∈ B andπ ∈ RNS·NG.

The number of constraints is finite and for structures withNG Gaussian points we
have to handleO(NG) unknowns andO(NG) constraints. Compared to the per-
fectly plastic and the unbounded kinematic hardening models, the problem (10) has
almost a double number of unknowns. Also the number of inequalities increases
byNG because of the limiting conditionsF [π i] 6 (σu,i − σy,i)2.

The number of Gaussian points becomes huge for industrial structures and
no effective solution algorithms for the nonlinear optimization problem (10) are
available. A method for handling such large–scale optimization problems, method
calledbasis reduction techniqueor subspace iteration), was used in (Shen, 1986),
(Zhang, 1991), (Heitzer, 1999).

5. The basis reduction technique for perfect plasticity

The subspace technique for the perfectly plastic behavior was proposed in (Shen,
1986) and then extended in (Zhang, 1991), (Gross-Weege, 1996), (Staat and Heitzer,
1997), (Heitzer, 1999).

For perfectly plastic material it holdsσu = σy. Therefore, the back–stresses
π = 0 and the following maximum problem with an arbitrary stressσ 0 must be
solved:

max α (11)

s.t. F [ασEi (j)+ ρi + σ 0
i ] 6 σ 2

y,i

for i = 1, . . . , NG, j = 1, . . . , NV, ρ ∈ B.
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The stressσ 0 can be in equilibrium with a dead load, for example with the weight
of the considered body.

Instead of searching the whole vector spaceB for a solution of this problem,
we search in ad–dimensional subspaceBd . Iteratively, a different subspaceBk

d

is chosen in thek -th step of the algorithm for improving the current load factor
αk−1. The dimension of the chosen subspaces is rather small compared to the di-
mension ofB, typically dimBk

d = d 6 6. The subspacesBk
d will be generated

by d linear independent vectorsρk,r , r = 1, . . . , d. For eachρ ∈ Bk
d there exist

µ1, . . . , µd ∈ R such that:

ρ = µ1ρ
k,1+ µ2ρ

k,2+ · · · + µdρk,d . (12)

Further, the unknownµ = (µ1, . . . , µd)
T ∈ Rd replaces the unknown residual

stressesρ ∈ Bk
d . The base vectorsρk,r , r = 1, . . . , d are assembled into the matrix

Bd,k:

Bd,ki =
(
ρ
k,1
i , . . . , ρ

k,d
i

)
.

With the stressesσ 0,k−1
i the perfect plastic problem which has to be solved in the

iteration stepk is:

max α (13)

s.t. F [ασEi (j)+ σ 0,k−1
i + Bd,ki µ] 6 σ 2

y,i

for i = 1, . . . , NG, j = 1, . . . , NV, µ ∈ Rd .
This convex problem hasd + 1 (µ andα) unknowns andNG · NV constraints.
For obtaining its solutionαk, one can use any optimization algorithm. If the point
(αk,µk) is a feasible point for thek–th step, then

ρ
0,k
i = ρ0,k−1

i + Bd,ki µk

and the next iteration can be performed. At the beginning of the iterative process
σ 0,0 = σ 0. It is obvious that the choice made forσ 0,k

i assures thatαk−1 6 αk for
each iteration. If the relative improvement(αk−αk−1)/αk−1 is smaller than a given
constant, the algorithm stops.

This reduction technique generalizes the line search technique, well–known in
optimization theory (Fletcher, 1987). Instead of searching the whole feasible region
for the optimum a subspace with a small dimension is chosen and one searches for
the best value in this subspace.

It has to be clarified how the base vectors of the residual subspaceBk
d have to

be chosen.

6. Generation of the residual stresses

The residual stresses are generated in each iteration. At the beginning of the(k+1)-



SHAKEDOWN PROBLEM FOR BOUNDED KINEMATIC HARDENING MATERIAL 193

th iteration, the load factorαk and the actual stresses corresponding to each load
vertexj are known

σ ki (j) = αkσEi (j)+ σ 0,k−1
i + Bd,ki µk, i = 1, . . . , NG.

Let Jk be the set of load vertices active in stepk, i.e.

j ∈ Jk − ∃ i such thatF
[
σ ki (j)

] = σ 2
y,i .

For eachj in Jk the residual stresses are generated during the plastic iteration
proposed in PERMAS IV (PERMAS, 1988) for solving an elastoplastic problem.
The version PERMAS 7 offers several modern nonlinear solvers and for this reason
an implementation of the shakedown analysis in PERMAS 7 is in preparation.

We begin with a loadR for which the first yielding takes place in some points
of the structure and the load increment1R is applied. In the iterationk+1, we use
R = αkP(j)+ P0 and1R = γP(j) where the dead loadP0 is in equilibrium with
the stressσ 0, j ∈ Jk andγ a parameter.

The iterative scheme used by PERMAS IV is based on the ‘initial strain’ method
and can be summarized as follows:

1. The actual stressσ corresponds to the considered load. Start with the estimated
equivalent plastic strain increment1εp = 0.

2. Calculate the load increment1Q0 corresponding to1εp = 1εp ∂F
∂σ
(σ ). (For

each elementE , 1Q0 =
∫
E B

T (x)E1εp(x)dV, with E the isotropic elasticity
matrix andB the strain–displacement matrix.)

3. Solve the discretized elastic equilibrium systemK1q = 1R+1Q0, whereK
is the global assembled stiffness matrix, for finding the displacement increment
1q. (K is not updated during the iteration scheme.)

4. Calculate the strain increment1ε, the actual stressσ and the equivalent plastic
strain increment1εp. For the elastic–perfectly plastic material

1εp =


1

s E s
(F (σ )− σ 2

y ), if F(σ ) > σ 2
y

0, otherwise.

In the previous relation,s = ∂F

∂σ
(σ ) is calculated with the stresses computed

in this step.
5. Compare the estimated value of the equivalent plastic strain increment with

the calculated value and if the convergence criteria is not fulfilled return to
Step 2 with the current actual stress and the calculated equivalent plastic strain
increment.
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With the notation̂σ i = σ i − E1εpi , for each iteration of the described scheme the
following relations can be derived from the virtual work principle:

NG∑
i=1

Ci ·
(
E1ε1

i − σ̂ 0
i

) = R+1R, . . . ,

NG∑
i=1

Ci ·
(
E1εd+1

i − σ̂ di
) = R+1R.

Here,1εri and σ̂ ri are the quantities obtained in ther–th iteration of the scheme.
Of course, the parameterκ must be large enough for allowingd iterations of the
scheme before the convergence criteria mentioned in Step 5 is achieved. Subtract-
ing the first equation from the others, the stresses

ρmi = E1εm+1
i − σ̂mi − E1ε1

i − σ̂ 0
i , withm = 1, . . . , d

are obviously residual stresses.

7. Proposed method for bounded kinematic hardening

The basis reduction and the subspace iteration technique described in section 5 can-
not be directly applied to the shakedown problem for bounded kinematic hardening
model. A method using the overlay model and the basis reduction was developed
in (Zhang, 1991), (Stein et al., 1993). The overlay model imposes that all the layers
are discretized in the same way, i.e. the elements which lay on top of each other
have the same nodes. Therefore, the implementation described in these papers
can be applied only for two–dimensional finite elements or for particular three–
dimensional finite elements. The method proposed in this section is applicable with
arbitrary three–dimensional finite elements.

Under the condition

σu < 2σy (14)

we propose a new method for estimating the shakedown load factor correspond-
ing to a bounded kinematic hardening behavior described through the constitutive
equations of the first paragraph.

Let αpp be the solution of the optimization problem corresponding to the per-
fectly plastic case:

max α (15)

s.t. F [ασEi (j)+ ρi] 6 σ 2
y,i

for i = 1, . . . , NG, j = 1, . . . , NV, ρ ∈ B.

The basis reduction technique presented in a previous section can be used for this
problem. In this case the stressσ 0 is zero. Letρpp be a residual stress such that
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(αpp , ρpp) is a feasible point for the above problem and at least for one Gaussian
point i∗ and one load vertexj ∗, the equality is achieved (i.e. the vertexj ∗ is active).
Corresponding to this load vertex the back–stressπ∗ is chosen:

π∗i =
σu,i − σy,i
σy,i

(
αppσ

E
i (j
∗)+ ρpp,i

)
with i = 1, . . . , NG.

The following optimization problem gives an estimation of the bounded kinematic
hardening load factor(αsd):

max α (16)

s.t. F [ασEi (j)+ ρi − π∗i ] 6 σ 2
y,i

for i = 1, . . . , NG, j = 1, . . . , NV, ρ ∈ B.

The basis reduction technique applies to the problem (16), this time with the stresses
σ 0 = −π∗. The condition (14) assures that(0,0) is a feasible point for this
problem, therefore its admissible set is non-empty.

The solutionα∗ of the problem (16) is an estimation of the load factorαsd .
If (α, ρ) is a feasible point for the problem (16), then(α, ρ,π∗) is a feasible

point for the optimization problem which gives the shakedown load factorαsd for
the bounded kinematic hardening behavior i.e. for the problem:

max α (17)

s.t. F [ασEi (j)+ ρi − π i] 6 σ 2
y,i

F [π i] 6
(
σu,i − σy,i

)2
for i = 1, . . . , NG, j = 1, . . . , NV, ρ ∈ B, π ∈ RNS·NG.

It follows thatα∗ 6 αsd .
Also, we must notice that if(α, ρ) is a feasible point for the problem (15), then

σy/σu (α, ρ) is a feasible point for the problem (17). Consequently, the greatest
possible value ofαsd is σu/σyαpp. The constantsσy andσu denote the minimum,
respectively the maximum, over all the Gaussian pointsxi of σy,i andσu,i, respect-
ively.

REMARK 1. Let us consider the particular load domainL = [0,P] , i.e. L is
the convex set generated by the load vertices0 andP. For homogeneous material
the yield and the ultimate stress do not vary with the Gaussian points. In this case,
if (α, ρ) is a feasible point for the problem (15), thenF [ρi] 6 σ 2

y for eachi and
it follows easily that

(
α,
(
2− σu/σy

)
ρ
)

is a feasible point for the problem (16).
Consequently, in this particular caseαpp 6 α∗.

REMARK 2. In limit analysis, i.e. for the load domainL = {P}, if the yield
and the ultimate stresses are constant then a well–known result proves thatαsd =
σu/σyαpp. Moreover, it follows easily that in this hypotheses alsoα∗ = αsd . For a
general load domain this assertion is not true anymore,αsd could take any value in
the closed interval

[
αpp, σu/σyαpp

]
.
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8. Implementation

For handling a wide range of structures it was decided to use the commercial
FEM-Code PERMAS (INTES, Stuttgart). This code infers in the implemented
method in two parts. It calculates the fictitious elastic stressesσE(j) for each
load vertexP(j). Also, it is used for the generation of the residual stressesρk

for each iterationk of the reduced basis method. As we have already mentioned,
the optimization problems (13) could be treated with any optimization procedure.
In our implementation the reduced problem is solved by a self-implemented SQP-
method (Sequential Quadratic Programming) with augmented Lagrangian type line
search function (Schittkowski, 1981), Armijo’s step length rule and BFGS matrix
update (Staat and Heitzer, 1997). Due to the small numbers of unknowns and
the large number of inequality constraints, the quadratic sub–problems are solved
by an active–set–strategy (Fletcher, 1987). Derivatives are calculated analytically
avoiding automatic differentiation methods. For more details we refer to (Heitzer,
1999).

The method proposed in the previous paragraph for obtaining an estimation of
the shakedown factor has the advantage that instead of solving the optimization
problem (10) with 1+ dimB + NS · NG unknowns, we solve two optimization
problems which can be treated with the basis reduction method. Consequently, even
for large–scale optimization problems we have to solve a sequence of optimization
problems with a small number of unknowns (maximum 7 unknowns).

The numerical tests performed for the mechanical problems described in the
next paragraph give values ofα∗ which are superior toαpp. For particular load
domains the new method gives a value ofα∗ equal to the limit valueσu/σyαpp.

For the considered examples, a reiteration of the method proposed in Section 7
doesn’t give an improvement of the load factorα∗. We expect that if the residual
stressρ∗ is chosen such that(α∗, ρ∗) is a feasible point for the problem (16) and
if the fictitious elastic stress̃σE corresponds to an active load vertex, thenα∗ is an
approximation for the numerical solution of the problem

max α

s.t. F [ασEi (j)+ ρi − π̃ i] 6 σ 2
y,i

for i = 1, . . . , NG, j = 1, . . . , NV, ρ ∈ B

with the back–stress̃π given by

π̃ i = σu,i − σy,i
σy,i

(
α∗σ̃Ei + ρ∗i

)
i = 1, . . . , NG.

Therefore, we consider that a better estimation of the shakedown load factorαsd
cannot be obtained in this way.

The numerical tests have shown that the particular choice of an active load
vertexj ∗ has no influence on the value obtained forα∗. We intend to study in fur-
ther research, the effect of considering a back–stress comprising the simultaneous
influence of several active load vertices.
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9. Numerical results

9.1. PROBLEM 1

A thin rectangular plate supported in the corners in the vertical direction is con-
sidered. The tensionp is applied on the lateral sides and the temperatureT is
equally distributed on the plate (see Figure 1). The numerical results for the bounded
kinematic hardening behavior correspond to the choiceσu = 1.5σy . Due to the
symmetry of the problem, only a quarter of the plate is considered. The nodes on
the sidex = 0 can move only in the horizontal direction and the nodes on the side
y = 0 only in the vertical direction. Because of the symmetry of the problem we
have used only one 9-noded quadrilateral plane membrane element QUAM9 (PER-
MAS, 1988). The load factors corresponding to the elastic, the perfectly plastic and
the bounded kinematic hardening behavior were computed for different ratios ofp

andT .
The load domainL represented in the space tension–temperature has four load

vertices:

P(1) = (p,0), P(2) = (0, T ), P(3) = (p, T ), P(4) = (0,0).
The enlarged domainαL is completely determined by the load vertex(αp, αT ).
The points(αp, αT ), whereα is the computed load factor, are represented for dif-
ferent ratios ofp andT . The obtained numerical results are shown in the Figure 2.
The analytical elastic solution for purely mechanical and purely thermal load,

p0 = 1√
1− ν + ν2

σy and T0 = 1

Eα
σy,

respectively, are used for scaling. Here,ν is the Poisson’s ratio,E is the Young’s
modulus for the considered material andα is the coefficient of thermal expansion.

We have observed a small influence of the bounded hardening for predomin-
ant thermal loadings. A significant increase of the load factor due to the bounded

Figure 1. Thin plate.
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Figure 2. Shakedown diagram for thin plate.

hardening is noticed if the pressure is dominant. The maximal possible shakedown
load factor of 1.5αpp is achieved when there is no temperature load. The curve
obtained from the elastic curve through a homothety by factor 2 gives an analytical
lower bound of the shakedown load factors for unboounded kinematic hardening
behavior. In the purely mechanical loading case the plate yields homogeneously,
thus the elastic and perfectly plastic factors coincide. Due to this behavior it is im-
possible to generate nontrivial residual stresses and therefore numerical problems
occur in the optimization algorithm.

9.2. PROBLEM 2

A thin pipe with the radiusR and the thicknessd = 0.1R is fixed in the axial
direction. The pressurep and the difference of temperature1T > 0 are applied on
the interior side (see Figure 3). The numerical results for the bounded kinematic
hardening behavior correspond to the choiceσu = 1.35σy . Eight axisymmetric
ring elements with quadrilateral cross section QUAX9 (PERMAS, 1988) are used
for the discretization. Because of the thinness of the pipe, a linear temperature
distribution is chosen. The load factors corresponding to the elastic, the perfectly
plastic and the bounded kinematic hardening behavior were computed for different
ratios ofp andT .

The load domainL represented in the space pressure–temperature has four load
vertices:

P(1) = (p,0), P(2) = (0, T ), P(3) = (p, T ), P(4) = (0,0).
The enlarged domainαL is completely determined by the load vertex(αp, αT ).
The maximal pressurep0 computed for purely mechanical loads and the maximal
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Figure 3. Thin pipe.

Figure 4. Shakedown diagram for thin pipe.

temperatureT0 for purely thermal loads are used for scaling, both quantities cor-
responding to the perfectly plastic material behavior with the yield stressσy. The
points (αp, αT ) are represented for different ratios ofp andT in Figure 4. No
influence of the bounded hardening for predominant thermal loadings is observed.
If the temperature loading is not the dominant one, an increase of the load factor
due to the bounded hardening is observed. The increase of the load factor due to
the considered hardening has been observed for those ratios ofp andT for which
the influence of the mechanical load on the initial yielding is significant.
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